Antifungals from Indian plants: A revisit in the covid -era

Garima Tripathi RKGIT(PHARMACY), Delhi-Meerut Road, Ghaziabad Yash Aggarwal

RKGIT(PHARMACY), Delhi-Meerut Road, Ghaziabad

Abstract

Although most fungi are harmless to people, some of them are capable of causing infections under specific conditions. Nonetheless, it can evade the immune system via various processes, including recombination, mitosis, and expression of genes involved in oxidative stress responses that prompt chronic fungal diseases. Despite the development of health care facilities, the incidence rate of fungal diseases is still impressively high.

Moreover, The occurrence of multidrug-resistant strains(MDR) of fungus has further necessitated the need to reconsider various classes of new antifungals from natural sources. The approach based on structural modifications of phytochemicals from traditional antifungals is high on expectation for improvement of the pharmacokinetic and pharmacodynamic property of this agent, further could reverse the antibiotic resistance. This review article aims to provide an insight into antifungal agents in natural prospects. In addition, modifications to the chemical structures of traditional antifungals are known to improve antifungal activity and pharmacokinetic parameters. We hereby present a review on plants of Indian origin, along with their diverse phytochemicals viz. Alkaloids, terpenoids, flavoinds, phenolics etc for the development of novel formulations.

Considering these facts, it could be stated that phytochemicals represent a valuable source of bioactive compounds with potent antimicrobial activities.

1. Introduction

It is a well-known fact that humans co-habitat with various microorganism but an inherent innate immune system protects them from disease.

Fungi are microorganisms characterized by a substance in their cell walls called chitin. A few fungi, like many types of mushrooms, are edible. Different kinds of fungi, like aspergillus, can be extremely dangerous and lead to dangerous illnesses[1].

Various types of fungi can cause fungal diseases (see table No-1, Table no-2). Sometimes, fungi that aren't commonly found on or inside your body can colonize it Shivam Singh RKGIT(PHARMACY), Delhi-Meerut Road, Ghaziabad Monika Sachdeva RKGIT(PHARMACY), Delhi-Meerut Road, Ghaziabad

and cause an infection. In different cases, fungi that are normally present on or inside your body can multiply out of control and cause an infection

Subclass	Example
Chytridiomycota	Allomyces, Blastoladiella, Coelomomyces, Physoderma, Synchytrium
Zygomycota	Amoebophilus, Mucor, Phycomyces, Rhizopus, Thamnidium
Ascomycota	Ascobolus, Aspergillus, Candida, Crinula, Neurospora, Penicillium, Pneumocystis, Saccharomyces
Basidiomycota	Agaricus, Boletes, Dacrymyces, Lycoperdon, Polyporous, Uromyces, Ustilago
Giomeromycota	Acaulospora, Entrophospora, Glomus
Microsporidia	Amblyopia, Encephalitozoon, Enterocytozoon, Nosema
Cryptomycota	Rozella

Table no 1 : Classes Of Fungi [2]

Fungal infections can be infectious. They can spread from one individual to another. In some cases, you can also catch illness-causing fungi from infected animals or contaminated soil or surfaces.[2]

A fungal infection is also called mycosis. Although most fungi are harmless to people, some of them are

capable of causing infections under specific conditions.

Fungi reproduce by releasing spores that can be gotten up by direct contact or even breathed in. That's why fungal diseases are most likely to influence your skin, nails, or lungs. Fungi can also penetrate your skin, influence your organs, and cause body-wide systemic diseases.

Fungal infections are divided into two types: primary and opportunistic. Opportunistic infections occur mainly in immunocompromised hosts, but primary infections may also occur in hosts with a healthy immune system.

A few kinds of fungi don't regularly cause infections in people but can cause illness in humans with weakened immune systems. These are called opportunistic diseases [1]. Worldwide, among some 2 million fungal species found only 600 species are known to cause diseases. The significant species that are mostly engaged with causing diseases are Cryptococcus, Candida, Trichophyton, and Aspergillus. The nature of fungal infection (see Table no -3) affecting the community can be categorised in the five following types:

- 1. Invasive fungal infections: cryptococcal meningitis, Candida bloodstream infection, invasive aspergillosis, Pneumocystis pneumonia
- 2. Chronic lung or deep tissue infection: chronic pulmonary aspergillosis
- 3. Allergic fungal disease: allergic bronchopulmonary aspergillosis also known as ABPA and severe asthma with fungal sensitization (SAFS).
- 4. Mucosal infection: oral and oesophagal candidiasis, Candida vaginitis
- 5. Skin, hair, and nail infection: athlete's Foot tinea capitis and onychomycosis [1] [3].

In this Covid -19 era, Indians as a community have become vulnerable to some rare life-threatening fungal infection. The reason behind this resurgence is the presence of a large no of diabetic and patients with other comorbidities.

Moreover, the widespread use of antifungals as of life-threatening prophylaxis used in case complications in patients with chemotherapy-induced neutropenia and patients on long-term immunosuppressive therapies following hematopoietic stem cell or solid-organ transplantation leads to a breakthrough of invasive mould infections aspergillosis; mucormycosis;[4].

Pandemic initiated use of steroids and antivirals,

antimicrobials have further increased the risk for secondary infections with fungus. further risen in the no of immunocompromised patients.

In India, the prevalence of mucormycosis before Covid-era was as high as 0.14 cases per 1000 population, which is about 80 times the prevalence of mucormycosis in developed countries making India more vulnerable [5] [6].

2. Conventional antifungal treatment

The synthetic antifungal agents are categorized structurally mainly under the classes of azole, allylamine, morpholine, hydroxypyrimidine, and polyene. (see Table no-3) [8]

Therapeutic options for aspergillosis are limited, particularly so for oral formulations, with azole drugs forming the backbone of therapy [9]. Many patients that develop resistant infections fail treatment, so resistance is an important factor in the outcome of these cases [10]. Multidrug resistance and side effects of synthetic antifungals: an emerging crisis

Table no-2: Epidemiology of Fungal infections worldwide [7]

		Estimated life- threatening	Mortality rates (% in
Fungal infection	Distribution	infections/y ear at that location*	infected population s)*
Opportunistic invasive mycoses		More than200,000	30-95
Aspergillosis (Aspergillus furnigatus)	Worldwide	More than400,000	46-75
Candidiasis (Candida albicans)	Worldwide	More than1000,00 0	20-70
Cryptococcus neoformans	Worldwide	More than10,000	30-90

Volume 1 / Issue 1

https://doi.org/XXXX/XXXX

	Worldwide,		
Mucromycosis	prevalent in		
(Pneumocystis	Asia (China	More	
jirovecii)	, India)	than400,000	20-80
Endemic			
dimorphic			
mycoses			
	Midwestern		
	and Atlantic		
blastomyces	United		
(dermatitidis)	States	aprrox3,000	<2-68
Coccidioidomyco	Southwester		
sis (Coccidiodes	n United	aprrox25,00	
immitis)	States	0	<1-70
Histoplasmosis	Midwestern		
(Histoplasmosis	United	aprrox25,00	
capsulatum)	States	0	28-50
Paracoccidioidom			
ycosis			
(paracoccidioides			
braselliensis)	Brazil	aprrox4,000	5-27
Penicilliosis			
(Penicillium	Southheast	More	
mameffei)	Asia	than8,000	2-75

 Table no-3: Treatment by antifungals [11] [12]

S. No	Class	Drugs	Diseases
			Topical fungal
		Clotrimazole,	infections,
		Econazole,	Candidiasis,
		Isoconazole,	aspergillus and
		Miconazole,	candida infections,
	Azole	Ketoconazole,	vaginal yeast
1	antifungals	Itraconazole	infections

			Oesophagal
		Caspofungin,	Candidiasis,
2	Echinocandins	Micafungin	Salvage therapy
		Amphotericin B,	Systemic mycosis,
4	Polyenes	Nystatin	superficial mycosis
	Phenolic		Dermatophytic
5	cyclohexane	Griseofulvin	infections
			Cryptococcosis,
			severe invasive
			aspergillosis,
			cryptococcal
			meningitis treated
	Synthetic		along with other
6	pyrimidines	Flucytosine	antifungals
			Topical fungal
7	Morpholines	Amorolfine	infections
			Dermatophytic
		Buthiobate,	infections, Tinea
8	Pyridines	Pyrifenox	conditions
			Invasive
			dermatophytic
			conditions and
9	Phthalimides	Captan	candida infections

The rapid increase of severe systemic infections and the spread of resistant microorganisms are indisputable facts. MDR is an unavoidable natural phenomenon, posing serious worldwide menace combat the MDR (see Table no-4). Pathogens tend to adopt various resistance mechanisms to survive unfavourable conditions. Inadequacy of available antimicrobial drugs compels the continuous development of newer drugs and novel therapies[13]. A combinational approach with new novel drug delivery systems and newer molecules from plants and their modified derivatives acting by various mechanism simultaneously can be an answer.

Moreover, these drugs possess serious side effects (see Table no-5) on the physiology viz. amphotericin B, which acts by binding to the sterol component of a cell membrane, leading to alterations in cell permeability and cell death, or fluconazole which is a highly selective

Volume 1 / Issue 1

https://doi.org/XXXX/XXXX

inhibitor of fungal cytochrome P450 dependent enzyme				
lanosterol 14-a-demethylase for fungistatic effect, and				
thus having numerous side effects.[17]				

Table no-4: List of drug-resistant fungi based on disease in the current scenario[13]

	Genus/species			
	of resistant			
Disease	Fungi	drug name	references	
		Fluconazole		
		and		
Candidiasis	Candida sp.	echinocandins	[14]	
	Cryptococcus			
Cryptococcosis	sp.	Fluconazole	[15]	1
Aspergillosis	Aspergillus sp.	Azoles	[10]	
		Amphotericin		
		B,		
	Scopulariopsis	flucytosine,		n
Onychomycosis	sp.	and azoles	[16]	
	Rhizopus sp. or			
	Mucor sp,			n
	Apophysomyces			
mucormycosis	sp	Posaconazole	[4]	$\left \right $

Table No-5: Side Effects Of Antifungal Drugs [12]

S. No	Side effects	Drugs
1	Non-melanoma skin cancer prolonged therapy	Voriconazole
2	Fever, Chills	Isavuconazole, Ketoconazole, Voriconazole, Flucytosine, Anidulafungin, Caspofungin

		Flucytosine, Fluconazole,
		Ketoconazole, Clotrimazole,
3	Rash	Voriconazole
		Isavuconazole, Itraconazole,
		Flucytosine, Fluconazole,
		Ketoconazole, Clotrimazole,
4	Nausea, vomiting	Voriconazole
4	Nausea, vonnting	vonconazore
		Flucytosine, Ketoconazole,
5	Abdominal pain	Isavuconazole, Voriconazole
		Amphotericin B, Caspofungin,
6	Anaemia	Flucytosine
	Leukopenia,	
7	Thrombocytopenia	Flucytosine, Fluconazole
/	Thromoocytopenia	Flucytosine, Fluconazole
	Decreased renal	Amphotericin B, Caspofungin,
8	function	Voriconazole
		Flucytosine, Fluconazole,
		Ketoconazole, Isavuconazole,
9	Headache	Voriconazole, Caspofungin
	Dark urine, clay-	
	coloured stools,	
10	jaundice	Anidulafungin C, Micafungin
10	jaunulee	Amoutarungin C, Micarungin

3. Indian Plants of interest with antifungal activity

Previous ethnopharmacological studies reveal the importance of medicinal plants in health and community care. They provide a vast resource for physiologically active bioactive compounds like polysaccharides, phenolic, tannins, flavonoids, terpenoids like steroids, saponins, alkaloids etc. [12]. This high chemical diversity of natural products make them successful candidates by affecting the evolutionary pressure to create biologically active molecules. Starting with the discovery of penicillin, Some antifungals, including polyenes and echinocandins, derive directly from natural sources. Nowadays, 80% of all available clinically used antibiotics are directly (or indirectly) derived from NPs [17].

of more than 2000 plant spices. This review aims to give insight on researches based on plant drugs. the Table no-6 enlist the plants with reported antifungal activities.

The indian system of medicines are having a backup

S.	Botanical name	Family	Parts used	Chemical classes	Activity	Ref
No.						
1	Xanthium	Asteraceae	Leaves	Essential oil	Active Against Candida	[30]
	strumarium L				Aspergillus	[31]
2	Moringa	Moringaceae	Leaves	Extracts (Aqueous, metahnol)	Candidiasis	[30]
	pterygosperma,					[32]
3	Micromeria	Labiatae	Oil	Phenolic compounds Extracts	Antifungal	[30]
	nervosa		Arieal parts	(Aqueous and Ethanolic)		[33]
4	Inula viscose	Compositae	Oil	Phenolic compounds	Active Against	[30]
			Arieal parts	Extracts (Aqueous and Ethanolic)	Colletotrichum	[33]
			Flowers		Ascomycetes	
					Basidiomycetes	
5	Piper aduncum	Piperaceae	Inflorescence	Terpenes, Essential oil	Dermatomycosis	[30]
			Leave			[34]
6	Aniba	Lauraceae	Whole plant	Alkaloid (Indazolidium)- novel	Active Against Drug	[35]
	panurensis			agent	resistant strain of	
					candida	
7	Syzygium	Myrtaceae	Seeds	Alkaloids	Anticandidal	[30]
	jambolanum		Leaf	Glycoside		[36]
			fruit			
			stem			
			bark			
8	Cassia tora	Leguminosae	Seeds	Anthraquinone	Anticandidal	[35]
9	Mentha piperita	Lamiaceae	Oil	Terpenes	Active Against	[30]
			Arieal parts	Essential Oil	Candida Aspergillus	

Table No 6: Medicinal Plants of India active against different human pathogenic fungi	[15]
Table No 0. Medicinal Flants of mula active against different numan pathogenic fungi	431
Tuote 110 of Dieureman Flands of India active against anterent naman paulogeme range	e.]

https://doi.org/XXXX/XXXX

						[37]
10	Cymbopogon citratus	Poaceae	Oil Arieal parts	Terpenes Essential Oil	Active Against Malassezia	[30]
					Trichophyton Dermatophytes	[38]
11	Tectona grandis	Verbenaceae	Bark	Extract (Aqueous)	Candidiasis	
			Leaves			[39] [32]
12	Aquilegia	Ranunculaceae	Leaves	Bis (benzyl)		[35]
	vulgaris		Stems		Anticandidal	
13	Persea americana	Lauraceae	Leaves	Chromene	Anticandidal	[35]
14	Tithonia diversifolia	Asteraceae	Whole plant	Saponins Polyphenols	Anticandidal	[40]
15	Prunus yedoensis	Rosaceae	Leaves	Diterpenes	Anticandidal	[35]
16	Datura metel	Solanaceae	Whole plant	Diterpenoid, Alkaloids	Anticandidal	[41]
17	Schinus terebinthifolius	Anacardiaceae	Stem bark	Extract	Anticandidal	[35]
18	Alibertia macrophylla	Rubiaceae	Leaves	Extract	Anticandidal	[35]
19	P. regnellii	Piperaceae	Leaves	Extract	Anticandidal	[35]
20	Ecballium elaterium	Cucurbitaceae	Fruit	Extract	Anticandidal	[35]
21	Vernonanthura tweedieana	Asteraceae	Root	Extract	Anticandidal	[39]
22	Psidium guajava	Myrtaceae	Leaves	Extract (methanol)	Anticandidal	[35]
23	Achillea millefolium	Asteraceae	Arieal parts Leaves	Flavonoids Phenolic acids	Anticandidal Antiaspergillus	[30] [33]

Volume 1 / Issue 1

https://doi.org/XXXX/XXXX

			Bark	Coumarins,		
				Terpenoids		
				(monoterpene, sequiterpene,		
				diterpene, triterpenes) Sterols		
24	Ajania	Asteraceae	Fruits	Guaianolides		[35]
	fruticulosa				Anticandidal	
25	Lupinus albus	Leguminosae	Leaf	Isiflavonoids	Active Against	[35]
			surface		Trichophyton	
26	Chamaecyparis	Cupressaceae	Leaves Twigs	Isoflavone		[35]
	pisifera				Anticandidal	
27	Justicia secunda	Acanthaceae	Leaf	Extract (Methanol)	Anticandidal	[30]
			Whole plant			[33]
28	Cajanus cajan	Fabaceae	Roots	Alkaloids Flavonoids	Anticandidal	[30]
				Tannins		[34]
				Extracts (Methanolic)		
29	Curcuma longa	Zingiberaceae	Rhizome	Oil ofTurmeric		[35]
						[30]
					Anticandidal	[33]
30	Terminalia	Combretaceae	Fruit	Phenolics	Strong Antifungal	[30]
	chebula		Bark		Anticandidal	[42]
			Roots	Tannins	Antimucor	
			Leaves	E transformation (Mathematic	Antiaspergillus	
			Seed	Extract of seed (Methanol,		
				aqueous)		
31	Parapiptadenia	Fabaceae	Stem bark	Pyrrolidine		[35]
	rigida			amide	Anticandidal	
32	Piptadenia	Mimosaceae	Stem bark	Saponins	Dermatophytes	[35]
	colubrina			Tannins	Active against	
				Lecuanthocyanidins	Trichophyton	
				,Extract (alchohol and aqueos)		
33	Mimosa	Mimosaceae	Stem bark	Sesquiterpene		[35]
	tenuiflora			lactone	Anticandidal	
34	Eugenia uniflora	Myrtaceae	Leaves	Sesquiterpenes Monoterpene	Anticandidal	[35]

https://doi.org/XXXX/XXXX

				hydrocarbons		
35	Zingiber	Zingiberaceae	Rhizomes	Steroidal		[39]
	officinale			saponin		[43]
					Anticandidal	[32]
36	Ocimum	Lamiaceae	Whole plant	Terpenes (monoterpene)	Active against Candida	[30]
	gratissimum,		Oil of Tulsi		Mucor	[34]
					Aspergillus	
					Mycospora	
					Trichophyton	
					Pathogenic plant fungi	
37	Eucalyptus	Myrtaceae	Leaves	Terpenes	Anticandidal	[30]
	globolus		Leave Oil	Extract	(highly significant)	[12]
				(methanol)		
38	Punica	Punicaceae	Seeds	Terpenes	Anticandidal	[30]
	granatum			Extract		[12]
				(methanol)		
39	Artemisia	Asteraceae	Arieal parts	Terpenes	Anticandidal Fusarium	[30]
	mexcana		Leaves	Extract	Aspergillus	[12]
			Bark	(methanol	Trichophyton Mocor	
40	Bocconia	Papaveraceae	Oil	Terpenes, Extract	Anticandidal	[30]
	arborea		Arieal parts	(methanol)		[12]
				Alkaloids		
41	Hypericum	Hypericaceae	Aerial Parts	Extract (Trichloromethanol, n-	Active Against Candida	[30]
	scabum		Bulb	hexane, aqueous)	Cryptococcus	[33]
			Seed		neoformans	
					Rhodotorula	
42	Rubia tinctorum	Rubiaceae	Root	Anthraquinone	Anticandida	[44]
				Qninones		
				Alizarin		
				Triterpene		
				1		

4. Role of Phytochemicals in antifungal activity: a mechanistic approach

Each class of synthetic antifungals has a unique mechanism of action each class though is unique: azoles inhibit the synthesis of ergosterol; polyenes attach to ergosterol; allylamine mount up squalene in the upstream of the ergosterol biosynthesis pathway; hydroxypyrimidine hampers the DNA replication, and morpholine diminishes ergosterol by inhibiting d14-sterol reductase [19].

The prime target of sensitive anti-fungal agents is the

ergosterol pathway as it is optimized to protect the fungi against mechanical and oxidative stress [18] [8].

Though the mechanisms of action of natural antifungal products and their structure-activity relationships are largely unexplained, researchers suggest that these phytoconstituents act singly or with combined mechanisms providing a wider spectrum and sensitivity in overcoming the development of drug résistance against agents. This varied and voluminous range of phytochemicals classified Based on their chemical structures into major i.e. alkaloids, sulfurcontaining compounds, terpenoids, and polyphenols etc... They are advantageous because of their properties like antioxidant, antifungal, antibacterial, immunity enhancer [20].

Alkaloids, the heterocyclic nitrogen molecule primarily act by Efflux pumps Inhibition (EPI) like piperine (piper longum, by inhibition of cell division like berberine (Berberis vulgaris), by the destruction of the cell wall by solasodine (Solanum khasianum) [21].

Organosulfur compounds, the Sulphur containing compounds such as allicin and ajoene from Allium sativum, dialkenyl and dialkyl sulphides, S-allyl cysteine and S-ally-mercapto cysteine, and isothiocyanates showed antimicrobial and antifungal activities by different thiol-dependent enzymatic systems. Phenethyl isothiocyanate, found within brassica vegetables might be related to factors viz. intracellular accumulation of reactive oxygen species and depolarization of mitochondrial membrane [3] [22][23].

Phenolic compounds, as bioactive molecules contain a large set viz flavone, isoflavones, flavonoids and flavonolignans, chalcones, polyphenols etc., play an important role in enhancing antibiotic or antifungal activity against resistant pathogens through various mechanisms viz. reverse inhibitors and competitive with ATP (apigenin), direct interaction with peptidoglycan inhibiting cell wall synthesis (Sophoraflavanone B), inhibitors of some enzymes like dihydrofolate, reductase, urease, sortase, and finally by inhibitory activity against DNA gyrase like in case of anthraquinones and tannins like chebulic acid [24].

Tannins also inactivate microbial adhesions and transport proteins through antibiofilm effects [25].

Quinones also exhibit antibiofilm activity by complex formation with nucleophilic amino acids leading to protein inactivation and loss of cell function. Purpurin, a natural red pigment found in madder root act by the downregulation of filamentation-associated genes and hyphal protein. [25]

Coumarins are reported to have several activities like a vasodilator, estrogenic, anticoagulant, analgesic, antiinflammation, sedative and hypnotic, hypothermic, antihelminthic, anticancer. antioxidant dermal and photosensitizing activity are potential subjects for multidrug therapy as well as against MDR pathogens [26]. Pterostilbene isolated from plants Pterocarpus ergosterol biosynthesis, marsupium act via oxidoreductase activity and heat shock proteins. [25]

Terpenes, the most diverse class of phytochemicals, widespread are high potential candidates as antifungal agents. Monoterpenes, like carvone, thymol, preferential impact on the structures of the membrane through increasing its fluidity and permeability, altering the topology of its proteins and making disturbances across the respiration chain, hence show synergistic activity in a combination of fluconazole [27].

Chitosan, an algal polysaccharide, derivatised with double Schiff bases showed profound antifungal activity compared with chitosan against *Fusarium oxysporum* f. sp. *Niveum* and plant pathogenic fungi[28].

5. Novel drug delivery systems and herbal formulation

Herbals as a novel delivery system are potential candidates as their side effects are minimal. Moreover, the natural compounds show a synergistic effect due to the presence of a complex mixture of molecules. Traditionally the natural components are known to be less toxic and their probability to develop resistance is mere. Many formulations like antifungal phytosomes (Zanthalene), liposomes (neem extract), nanoparticles (in candidiasis), micro and nanoemulsion (Quercus extract), microspheres (curcumin), neosomes(chitosan), transdermal deliverv system (plumbagin), ethosomes(Tridax), transferomes(cholchicines), hydrogels (synthetic antifungal) are the few to name.

6. Conclusion and prospects

Natural products derived from medicinal plants with traditional or folklore medicines are promising candidates for the treatment of fungal diseases. The sighted isolates of phytochemicals showed overwhelming sensitivity against many clinical fungi. The clinical effect of antifungals was neither restricted to any particular class of phytochemical nor any particular plant family. These reviewed preclinical studies deserve the paramount attention of the pharma industry for further detailed studies to identify more clinically useful agents. In addition, mechanistic studies revealed that these natural chemicals exert their effects through multiple mechanisms, unlike synthetic standard antifungal agents. Studies revealed that plant product with different receptor sites and mechanism of action, have less proven resistance and have better tolerability to manage the current emergence of resistance to numerous synthetic agents. The newer techniques in the drug discovery for natural product further encourages researchers to isolate and characterize phytopharmaceuticals may lead to some exceptional molecules. Moreover, the Development of novel drug with effective preliminary study including an effective site for action, safety and better clinical profile is today the requirement of immunocompromised subjects, as well as MDR crisis covid era for better lifecare.

References

[1] Asghar Sepahvand et al, Hossein Eliasy, and Mehdi Mohammadi, "A review of the most effective medicinal plants for dermatophytosis in traditional medicine | Biomedical Research and Therapy." http://www.bmrat.org/index.php/BMRAT/article/view/450 (accessed Jun. 11, 2021).

[2] Microbiology. New York: Tata McGraw-Hill, 2003.

[3] G. S. Kobayashi, "Disease Mechanisms of Fungi,"
in Medical Microbiology, 4th ed., S. Baron, Ed. Galveston
(TX): University of Texas Medical Branch at Galveston,
1996. Accessed: Jun. 11, 2021. [Online]. Available:
http://www.ncbi.nlm.nih.gov/books/NBK8103/

[4] F. Lamoth, S. J. Chung, L. Damonti, and B. D. Alexander, "Changing Epidemiology of Invasive Mold Infections in Patients Receiving Azole Prophylaxis," Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am., vol. 64, no. 11, pp. 1619–1621, Jun. 2017, DOI: 10.1093/CID/cix130.

[5] A. Skiada, I. Pavleas, and M. Drogari-Apiranthitou, "Epidemiology and Diagnosis of Mucormycosis: An Update," J. Fungi, vol. 6, no. 4, p. 265, Nov. 2020, doi: 10.3390/jof6040265.

[6] C. J et al., "Saksenaea erythrospora, an emerging mucoralean fungus causing severe necrotizing skin and soft

tissue infections - a study from a tertiary care hospital in north India," Infect. Dis. Lond. Engl., vol. 49, no. 3, Mar. 2017, doi: 10.1080/23744235.2016.1239027.

[7] G. D. Brown, D. W. Denning, N. A. R. Gow, S. M. Levitz, M. G. Netea, and T. C. White, "Hidden Killers: Human Fungal Infections," Sci. Transl. Med., vol. 4, no. 165, pp. 165rv13-165rv13, Dec. 2012, doi: 10.1126/scitranslmed.3004404.

[8] M. K. Kathiravan et al., "The biology and chemistry of antifungal agents: a review," Bioorg. Med. Chem., vol. 20, no. 19, pp. 5678–5698, 2012.

[9] T. J. Walsh et al., "Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America," Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am., vol. 46, no. 3, pp. 327–360, Feb. 2008, doi: 10.1086/525258.

[10] S. J. Howard and M. C. Arendrup, "Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection," Med. Mycol., vol. 49, no. S1, pp. S90–S95, Apr. 2011, doi: 10.3109/13693786.2010.508469.

[11] Revankar SJ., Merck Manual professional version.Wayne State University School of Medicine, 2018.

[12] G. Murtaza, M. Mukhtar, A. Sarfraz, and G. Murtaza, "A Review: Antifungal Potentials of Medicinal Plants," J. Bioresour. Manag., vol. 2, Jun. 2015, doi: 10.35691/JBM.5102.0018.

J. Tanwar, S. Das, Z. Fatima, and S. Hameed, "Multidrug Resistance: An Emerging Crisis," Interdiscip. Perspect. Infect. Dis., vol. 2014, pp. 1–7, 2014, doi: 10.1155/2014/541340. [14] J. Loeffler and D. A. Stevens, "Antifungal Drug Resistance," Clin. Infect. Dis., vol. 36, no. Supplement_1, pp. S31–S41, Jan. 2003, doi: 10.1086/344658.

[15] L. Rodero et al., "G484S Amino Acid Substitution in Lanosterol 14- α Demethylase (ERG11) Is Related to Fluconazole Resistance in a Recurrent Cryptococcus neoformans Clinical Isolate," Antimicrob. Agents Chemother., vol. 47, no. 11, pp. 3653–3656, Nov. 2003, doi: 10.1128/AAC.47.11.3653-3656.2003.

[16] M. Cuenca-Estrella, A. Gomez-Lopez, E. Mellado, M. J. Buitrago, A. Monzón, and J. L. Rodriguez-Tudela, "Scopulariopsis brevicaulis, a Fungal Pathogen Resistant to Broad-Spectrum Antifungal Agents," Antimicrob. Agents Chemother., vol. 47, no. 7, pp. 2339–2341, Jul. 2003, doi: 10.1128/AAC.47.7.2339-2341.2003.

[17] H. Khan et al., "Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review," Biomed. Pharmacother., vol. 93, pp. 498–509, Sep. 2017, doi: 10.1016/j.biopha.2017.06.077.

[18] S. W. Wong-Deyrup et al., "Plant-derived isoquinoline alkaloids that target ergosterol biosynthesis discovered by using a novel antifungal screening tool," Biomed. Pharmacother., vol. 137, p. 111348, May 2021, doi: 10.1016/j.biopha.2021.111348.

[19] S. Dupont, G. Lemetais, T. Ferreira, P. Cayot, P. Gervais, and L. Beney, "Ergosterol biosynthesis: a fungal pathway for life on land?," Evol. Int. J. Org. Evol., vol. 66, no. 9, pp. 2961–2968, 2012.

[20] B. Khameneh, M. Iranshahy, V. Soheili, and B. S.
Fazly Bazzaz, "Review on plant antimicrobials: a mechanistic viewpoint," Antimicrob. Resist. Infect.
Control, vol. 8, no. 1, p. 118, Dec. 2019, doi: 10.1186/s13756-019-0559-6.

[21] B. Khameneh, M. Iranshahy, M. Ghandadi, D. Ghoochi Atashbeyk, B. S. Fazly Bazzaz, and M. Iranshahi, "Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus," Drug Dev. Ind. Pharm., vol. 41, no. 6, pp. 989–994, Jun. 2015, doi: 10.3109/03639045.2014.920025.

[22] S. Yoshida, S. Kasuga, N. Hayashi, T. Ushiroguchi, H. Matsuura, and S. Nakagawa, "Antifungal activity of ajoene derived from garlic," Appl. Environ. Microbiol., vol. 53, no. 3, pp. 615–617, Mar. 1987, doi: 10.1128/aem.53.3.615-617.1987.

[23] B. Calmes et al., "Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery," Front. Plant Sci., vol. 06, Jun. 2015, doi: 10.3389/fpls.2015.00414.

[24] H. Gradišar, P. Pristovšek, A. Plaper, and R. Jerala,
"Green Tea Catechins Inhibit Bacterial DNA Gyrase by Interaction with Its ATP Binding Site," J. Med. Chem., vol. 50, no. 2, pp. 264–271, Jan. 2007, doi: 10.1021/jm0608170.

[25] M. S. Ahmad Khan, M. M. Altaf, and M. Sajid,
"Insights of Phyto-Compounds as Antipathogenic Agents,"
in New Look to Phytomedicine, Elsevier, 2019, pp. 367–389. doi: 10.1016/B978-0-12-814619-4.00014-8.

[26] Y. K. Al-Majedy, A. A. H. Kadhum, A. A. Al-Amiery, and A. B. Mohamad, "Coumarins: The Antimicrobial agents," Syst. Rev. Pharm., vol. 8, no. 1, pp. 62–70, Apr. 2017, doi: 10.5530/srp.2017.1.11.

[27] A. Sharifzadeh, A. R. Khosravi, H. Shokri, and H. Shirzadi, "Potential effect of 2-isopropyl-5-methylphenol (thymol) alone and in combination with fluconazole against clinical isolates of Candida albicans, C. glabrata and C.

krusei," J. Mycol. Médicale, vol. 28, no. 2, pp. 294–299, Jun. 2018, doi: 10.1016/j.mycmed.2018.04.002.

[28] L. Wei et al., "Antifungal activity of double Schiff bases of chitosan derivatives bearing active halogenobenzenes," Int. J. Biol. Macromol., vol. 179, pp. 292–298, 2021.

[29] K. KAUSHIK and S. AGARWAL, "The ROLE OF HERBAL ANTIFUNGAL AGENTS FOR THE MANAGEMENT OF FUNGAL DISEASES: A SYSTEMATIC REVIEW," Asian J. Pharm. Clin. Res., pp. 34–40, May 2019, doi: 10.22159/ajpcr.2019.v12i7.33831.

[30] V. Navarro, Ma. L. Villarreal, G. Rojas, and X. Lozoya, "Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases," J. Ethnopharmacol., vol. 53, no. 3, pp. 143–147, Sep. 1996, doi: 10.1016/0378-8741(96)01429-8.

[31] D. I. Ribeiro et al., "Determination of antifungal activity of essential oils of Curcuma longa L. (Zingiberaceae) and Achillea millefolium (Asteraceae) grown in the Northwest Paraná.," Arq. Ciênc. Saúde UNIPAR, vol. 14, no. 2, pp. 103–109, 2010.

[32] D. Srinivasan, S. Nathan, T. Suresh, and P. Lakshmana Perumalsamy, "Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine,"
J. Ethnopharmacol., vol. 74, no. 3, pp. 217–220, Mar. 2001, doi: 10.1016/S0378-8741(00)00345-7.

[33] M. S. Ali-Shtayeh, R. M.-R. Yaghmour, Y. R. Faidi, K. Salem, and M. A. Al-Nuri, "Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area," J. Ethnopharmacol., vol. 60, no. 3, pp. 265–271, Apr. 1998, doi: 10.1016/S0378-8741(97)00153-0.

[34] "(PDF) Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil | Fernanda Braga - Academia.edu." https://www.academia.edu/11094347/Antileishmanial_and_ antifungal_activity_of_plants_used_in_traditional_medicine in Brazil (accessed Jun. 10, 2021).

[35] Programa de Pós graduação em Ciências
Farmacêuticas, Universidade Federal do Rio Grande do
Norte, Brazil. et al., "Antifungal activity of medicinal plants
from Northeastern Brazil," J. Med. Plants Res., vol. 7, no.
40, pp. 3008–3013, Oct. 2013, doi:
10.5897/JMPR2013.5035.

[36] M. Chandrasekaran and V. Venkatesalu, "Antibacterial and antifungal activity of Syzygium jambolanum seeds," J. Ethnopharmacol., vol. 91, no. 1, pp. 105–108, Mar. 2004, doi: 10.1016/j.jep.2003.12.012.

[37] M. J. Saharkhiz, M. Motamedi, K. Zomorodian, K. Pakshir, R. Miri, and K. Hemyari, "Chemical Composition, Antifungal and Antibiofilm Activities of the Essential Oil of Mentha piperita L.," ISRN Pharm., vol. 2012, p. e718645, Dec. 2012, doi: 10.5402/2012/718645.

[38] E. S. Carmo, F. de O. Pereira, N. M. Cavalcante, C. W. Gayoso, and E. de O. Lima, "Treatment of pityriasis versicolor with topical application of essential oil of Cymbopogon citratus (DC) Stapf - therapeutic pilot study," An. Bras. Dermatol., vol. 88, no. 3, pp. 381–385, Jun. 2013, doi: 10.1590/abd1806-4841.20131800.

[39] K. Endo, E. Kanno, and Y. Oshima, "Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale," Phytochemistry, vol. 29, no. 3, pp. 797–799, Jan. 1990, doi: 10.1016/0031-9422(90)80021-8.

https://doi.org/XXXX/XXXX

[40] A. Portillo, R. Vila, B. Freixa, T. Adzet, and S. Cañigueral, "Antifungal activity of Paraguayan plants used in traditional medicine," J. Ethnopharmacol., vol. 76, no. 1, pp. 93–98, Jun. 2001, doi: 10.1016/S0378-8741(01)00214-8.

[41] J. L. Ingham, S. Tahara, and J. B. Harborne,
"Fungitoxic Isoflavones from Lupinus albus and other Lupinus Species," Z. Für Naturforschung C, vol. 38, no. 3– 4, pp. 194–200, Apr. 1983, doi: 10.1515/znc-1983-3-407.

[42] A. Vonshak, O. Barazani, P. Sathiyamoorthy, R. Shalev, D. Vardy, and A. Golan-Goldhirsh, "Screening South Indian medicinal plants for antifungal activity against cutaneous pathogens," Phytother. Res., vol. 17, no. 9, pp. 1123–1125, Nov. 2003, doi: 10.1002/ptr.1399.

[43] R. Dabur, A. K. Chhillar, V. Yadav, P. K. Kamal,
J. Gupta, and G. L. Sharma, "In vitro antifungal activity of 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative," J. Med.
Microbiol., vol. 54, no. 6, pp. 549–552, Jun. 2005, doi: 10.1099/jmm.0.45968-0.

[44] M. Y. Bouberte, K. Krohn, H. Hussain, E. Dongo,
B. Schulz, and Q. Hu, "Tithoniamarin and tithoniamide: a structurally unique isocoumarin dimer and a new ceramide from Tithonia diversifolia," Nat. Prod. Res., vol. 20, no. 9, pp. 842–849, Jul. 2006, doi: 10.1080/14786410500462892.

[45] G. Murtaza, M. Mukhtar, and A. Sarfraz, "A Review: Antifungal Potentials of MedicinalPlants," J. Bioresour. Manag., vol. 2, no. 2, p. 4, Jun. 2015, doi: 10.35691/JBM.5102.0018.